Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations.
نویسندگان
چکیده
fw2.2 is a major quantitative trait locus that accounts for as much as 30% of the difference in fruit size between wild and cultivated tomatoes. Evidence thus far indicates that fw2.2 alleles modulate fruit size through changes in gene regulation rather than in the FW2.2 protein itself. To investigate the nature of these regulatory changes and the manner in which they may affect fruit size, a pair of nearly isogenic lines has been subjected to detailed developmental, transcriptional, mitotic, and in situ hybridization studies. The results indicate that the large- and small-fruited alleles of fw2.2 differ in peak transcript levels by approximately 1 week. Moreover, this difference in timing of expression is associated with concomitant changes in mitotic activity in the early stage of fruit development. The changes in timing of gene expression (heterochronic allelic variation), combined with overall differences in total transcript levels, are sufficient to account for a large portion phenotypic differences in fruit weight associated with the two alleles.
منابع مشابه
Generation and analysis of an artificial gene dosage series in tomato to study the mechanisms by which the cloned quantitative trait locus fw2.2 controls fruit size.
It has been proposed that fw2.2 encodes a negative fruit-growth regulator that underlies natural fruit-size variation in tomato (Lycopersicon spp.) via heterochronic allelic variation of fw2.2 expression, rather than by variation in the structural protein itself. To further test the negative regulator and the transcriptional control hypotheses, a gene dosage series was constructed, which produc...
متن کاملfw2.2: a quantitative trait locus key to the evolution of tomato fruit size.
Domestication of many plants has correlated with dramatic increases in fruit size. In tomato, one quantitative trait locus (QTL), fw2.2, was responsible for a large step in this process. When transformed into large-fruited cultivars, a cosmid derived from the fw2.2 region of a small-fruited wild species reduced fruit size by the predicted amount and had the gene action expected for fw2.2. The c...
متن کاملfw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution.
fw2.2 is a quantitative trait locus responsible for approximately 30% of the difference in fruit size between large, domesticated tomatoes (Lycopersicon esculentum Mill.) and their small-fruited wild relatives. The gene underlying this quantitative trait locus was cloned recently and shown to be associated with altered cell division in ovaries (Frary et al., 2000). However, it was not known whe...
متن کاملFruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits
Increases in fruit weight of cultivated vegetables and fruits accompanied the domestication of these crops. Here we report on the positional cloning of a quantitative trait locus (QTL) controlling fruit weight in tomato. The derived allele of Cell Size Regulator (CSR-D) increases fruit weight predominantly through enlargement of the pericarp areas. The expanded pericarp tissues result from incr...
متن کاملA new class of regulatory genes underlying the cause of pear-shaped tomato fruit.
A common, recurring theme in domesticated plants is the occurrence of pear-shaped fruit. A major quantitative trait locus (termed ovate) controlling the transition from round to pear-shaped fruit has been cloned from tomato. OVATE is expressed early in flower and fruit development and encodes a previously uncharacterized, hydrophilic protein with a putative bipartite nuclear localization signal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 21 شماره
صفحات -
تاریخ انتشار 2002